from small one page howto to huge articles all in one place
 

search text in:





Poll
Which linux distribution do you use?







poll results

Last additions:
using iotop to find disk usage hogs

using iotop to find disk usage hogs

words:

887

views:

186344

userrating:

average rating: 1.7 (102 votes) (1=very good 6=terrible)


May 25th. 2007:
Words

486

Views

250360

why adblockers are bad


Workaround and fixes for the current Core Dump Handling vulnerability affected kernels

Workaround and fixes for the current Core Dump Handling vulnerability affected kernels

words:

161

views:

137535

userrating:

average rating: 1.4 (42 votes) (1=very good 6=terrible)


April, 26th. 2006:

Druckversion
You are here: manpages





ENDIAN

Section: Linux Programmer's Manual (3)
Updated: 2017-09-15
Index Return to Main Contents
 

NAME

htobe16, htole16, be16toh, le16toh, htobe32, htole32, be32toh, le32toh, htobe64, htole64, be64toh, le64toh - convert values between host and big-/little-endian byte order  

SYNOPSIS

#include <endian.h>

uint16_t htobe16(uint16_t host_16bits);
uint16_t htole16(uint16_t host_16bits);
uint16_t be16toh(uint16_t big_endian_16bits);
uint16_t le16toh(uint16_t little_endian_16bits);

uint32_t htobe32(uint32_t host_32bits);
uint32_t htole32(uint32_t host_32bits);
uint32_t be32toh(uint32_t big_endian_32bits);
uint32_t le32toh(uint32_t little_endian_32bits);

uint64_t htobe64(uint64_t host_64bits);
uint64_t htole64(uint64_t host_64bits);
uint64_t be64toh(uint64_t big_endian_64bits);
uint64_t le64toh(uint64_t little_endian_64bits);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

htobe16(), htole16(), be16toh(), le16toh(), htobe32(), htole32(), be32toh(), le32toh(), htobe64(), htole64(), be64toh(), le64toh():

    Since glibc 2.19:
        _DEFAULT_SOURCE
    In glibc up to and including 2.19:
        _BSD_SOURCE
 

DESCRIPTION

These functions convert the byte encoding of integer values from the byte order that the current CPU (the "host") uses, to and from little-endian and big-endian byte order.

The number, nn, in the name of each function indicates the size of integer handled by the function, either 16, 32, or 64 bits.

The functions with names of the form "htobenn" convert from host byte order to big-endian order.

The functions with names of the form "htolenn" convert from host byte order to little-endian order.

The functions with names of the form "benntoh" convert from big-endian order to host byte order.

The functions with names of the form "lenntoh" convert from little-endian order to host byte order.  

VERSIONS

These functions were added to glibc in version 2.9.  

CONFORMING TO

These functions are nonstandard. Similar functions are present on the BSDs, where the required header file is <sys/endian.h> instead of <endian.h>. Unfortunately, NetBSD, FreeBSD, and glibc haven't followed the original OpenBSD naming convention for these functions, whereby the nn component always appears at the end of the function name (thus, for example, in NetBSD, FreeBSD, and glibc, the equivalent of OpenBSDs "betoh32" is "be32toh").  

NOTES

These functions are similar to the older byteorder(3) family of functions. For example, be32toh() is identical to ntohl().

The advantage of the byteorder(3) functions is that they are standard functions available on all UNIX systems. On the other hand, the fact that they were designed for use in the context of TCP/IP means that they lack the 64-bit and little-endian variants described in this page.  

EXAMPLE

The program below display the results of converting an integer from host byte order to both little-endian and big-endian byte order. Since host byte order is either little-endian or big-endian, only one of these conversions will have an effect. When we run this program on a little-endian system such as x86-32, we see the following:

$ ./a.out x.u32 = 0x44332211 htole32(x.u32) = 0x44332211 htobe32(x.u32) = 0x11223344  

Program source

#include <endian.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h>

int main(int argc, char *argv[]) {
    union {
        uint32_t u32;
        uint8_t arr[4];
    } x;


    x.arr[0] = 0x11;    /* Lowest-address byte */

    x.arr[1] = 0x22;
    x.arr[2] = 0x33;
    x.arr[3] = 0x44;    /* Highest-address byte */


    printf("x.u32 = 0x%x\n", x.u32);
    printf("htole32(x.u32) = 0x%x\n", htole32(x.u32));
    printf("htobe32(x.u32) = 0x%x\n", htobe32(x.u32));


    exit(EXIT_SUCCESS); }  

SEE ALSO

bswap(3), byteorder(3)  

COLOPHON

This page is part of release 4.13 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.


 

Index

NAME
SYNOPSIS
DESCRIPTION
VERSIONS
CONFORMING TO
NOTES
EXAMPLE
Program source
SEE ALSO
COLOPHON





Support us on Content Nation
rdf newsfeed | rss newsfeed | Atom newsfeed
- Powered by LeopardCMS - Running on Gentoo -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
Valid XHTML1.1 : Valid CSS : buttonmaker
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -
- Copyright and legal notices -
Time to create this page: 15.2 ms