from small one page howto to huge articles all in one place

search text in:

What does your sytem tell when running "ulimit -u"?

poll results

Last additions:
using iotop to find disk usage hogs

using iotop to find disk usage hogs






average rating: 1.7 (102 votes) (1=very good 6=terrible)

May 25th. 2007:




why adblockers are bad

Workaround and fixes for the current Core Dump Handling vulnerability affected kernels

Workaround and fixes for the current Core Dump Handling vulnerability affected kernels






average rating: 1.4 (42 votes) (1=very good 6=terrible)

April, 26th. 2006:

You are here: manpages


Section: OpenSSL (1)
Updated: 2017-05-25
Index Return to Main Contents


pkeyutl - public key algorithm utility  


openssl pkeyutl [-in file] [-out file] [-sigfile file] [-inkey file] [-keyform PEM|DER] [-passin arg] [-peerkey file] [-peerform PEM|DER] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt] [-derive] [-pkeyopt opt:value] [-hexdump] [-asn1parse] [-engine id]  


The pkeyutl command can be used to perform public key operations using any supported algorithm.  


-in filename
This specifies the input filename to read data from or standard input if this option is not specified.
-out filename
specifies the output filename to write to or standard output by default.
-inkey file
the input key file, by default it should be a private key.
-keyform PEM|DER
the key format PEM, DER or ENGINE.
-passin arg
the input key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS section in openssl(1).
-peerkey file
the peer key file, used by key derivation (agreement) operations.
-peerform PEM|DER
the peer key format PEM, DER or ENGINE.
-engine id
specifying an engine (by its unique id string) will cause pkeyutl to attempt to obtain a functional reference to the specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.
the input file is a public key.
the input is a certificate containing a public key.
reverse the order of the input buffer. This is useful for some libraries (such as CryptoAPI) which represent the buffer in little endian format.
sign the input data and output the signed result. This requires a private key.
verify the input data against the signature file and indicate if the verification succeeded or failed.
verify the input data and output the recovered data.
encrypt the input data using a public key.
decrypt the input data using a private key.
derive a shared secret using the peer key.
hex dump the output data.
asn1parse the output data, this is useful when combined with the -verifyrecover option when an ASN1 structure is signed.


The operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations and options are indicated below.

Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used in the EVP_get_digestbyname() function for example sha1. This value is used only for sanity-checking the lengths of data passed in to the pkeyutl and for creating the structures that make up the signature (e.g. DigestInfo in RSASSA PKCS#1 v1.5 signatures). In case of RSA, ECDSA and DSA signatures, this utility will not perform hashing on input data but rather use the data directly as input of signature algorithm. Depending on key type, signature type and mode of padding, the maximum acceptable lengths of input data differ. In general, with RSA the signed data can't be longer than the key modulus, in case of ECDSA and DSA the data shouldn't be longer than field size, otherwise it will be silently truncated to field size.

In other words, if the value of digest is sha1 the input should be 20 bytes long binary encoding of SHA-1 hash function output.  


The RSA algorithm supports encrypt, decrypt, sign, verify and verifyrecover operations in general. Some padding modes only support some of these operations however.
This sets the RSA padding mode. Acceptable values for mode are pkcs1 for PKCS#1 padding, sslv23 for SSLv23 padding, none for no padding, oaep for OAEP mode, x931 for X9.31 mode and pss for PSS.

In PKCS#1 padding if the message digest is not set then the supplied data is signed or verified directly instead of using a DigestInfo structure. If a digest is set then the a DigestInfo structure is used and its the length must correspond to the digest type.

For oeap mode only encryption and decryption is supported.

For x931 if the digest type is set it is used to format the block data otherwise the first byte is used to specify the X9.31 digest ID. Sign, verify and verifyrecover are can be performed in this mode.

For pss mode only sign and verify are supported and the digest type must be specified.

For pss mode only this option specifies the salt length. Two special values are supported: -1 sets the salt length to the digest length. When signing -2 sets the salt length to the maximum permissible value. When verifying -2 causes the salt length to be automatically determined based on the PSS block structure.


The DSA algorithm supports signing and verification operations only. Currently there are no additional options other than digest. Only the SHA1 digest can be used and this digest is assumed by default.  


The DH algorithm only supports the derivation operation and no additional options.  


The EC algorithm supports sign, verify and derive operations. The sign and verify operations use ECDSA and derive uses ECDH. Currently there are no additional options other than digest. Only the SHA1 digest can be used and this digest is assumed by default.  


Sign some data using a private key:

 openssl pkeyutl -sign -in file -inkey key.pem -out sig

Recover the signed data (e.g. if an RSA key is used):

 openssl pkeyutl -verifyrecover -in sig -inkey key.pem

Verify the signature (e.g. a DSA key):

 openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem

Sign data using a message digest value (this is currently only valid for RSA):

 openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256

Derive a shared secret value:

 openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret



genpkey(1), pkey(1), rsautl(1) dgst(1), rsa(1), genrsa(1)




Support us on Content Nation
rdf newsfeed | rss newsfeed | Atom newsfeed
- Powered by LeopardCMS - Running on Gentoo -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
Valid XHTML1.1 : Valid CSS : buttonmaker
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -
- Copyright and legal notices -
Time to create this page: 18.0 ms