You are here: manpages
POW
Section: Linux Programmer's Manual (3) Updated: 20170915 Index
Return to Main Contents
NAME
pow, powf, powl  power functions
SYNOPSIS
#include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
Link with lm.
Feature Test Macro Requirements for glibc (see
feature_test_macros(7)):
powf(),
powl():

_ISOC99_SOURCE  _POSIX_C_SOURCE >= 200112L
 /* Since glibc 2.19: */ _DEFAULT_SOURCE
 /* Glibc versions <= 2.19: */ _BSD_SOURCE  _SVID_SOURCE
DESCRIPTION
These functions return the value of
x
raised to the
power of
y.
RETURN VALUE
On success, these functions return the value of
x
to the power of
y.
If
x
is a finite value less than 0, and
y
is a finite noninteger, a domain error occurs,
and a NaN is returned.
If the result overflows,
a range error occurs,
and the functions return
HUGE_VAL,
HUGE_VALF,
or
HUGE_VALL,
respectively, with the mathematically correct sign.
If result underflows, and is not representable,
a range error occurs,
and 0.0 is returned.
Except as specified below, if
x
or
y
is a NaN, the result is a NaN.
If
x
is +1, the result is 1.0 (even if
y
is a NaN).
If
y
is 0, the result is 1.0 (even if
x
is a NaN).
If
x
is +0 (0),
and
y
is an odd integer greater than 0,
the result is +0 (0).
If
x
is 0,
and
y
greater than 0 and not an odd integer,
the result is +0.
If
x
is 1,
and
y
is positive infinity or negative infinity,
the result is 1.0.
If the absolute value of
x
is less than 1,
and
y
is negative infinity,
the result is positive infinity.
If the absolute value of
x
is greater than 1,
and
y
is negative infinity,
the result is +0.
If the absolute value of
x
is less than 1,
and
y
is positive infinity,
the result is +0.
If the absolute value of
x
is greater than 1,
and
y
is positive infinity,
the result is positive infinity.
If
x
is negative infinity,
and
y
is an odd integer less than 0,
the result is 0.
If
x
is negative infinity,
and
y
less than 0 and not an odd integer,
the result is +0.
If
x
is negative infinity,
and
y
is an odd integer greater than 0,
the result is negative infinity.
If
x
is negative infinity,
and
y
greater than 0 and not an odd integer,
the result is positive infinity.
If
x
is positive infinity,
and
y
less than 0,
the result is +0.
If
x
is positive infinity,
and
y
greater than 0,
the result is positive infinity.
If
x
is +0 or 0,
and
y
is an odd integer less than 0,
a pole error occurs and
HUGE_VAL,
HUGE_VALF,
or
HUGE_VALL,
is returned,
with the same sign as
x.
If
x
is +0 or 0,
and
y
is less than 0 and not an odd integer,
a pole error occurs and
+HUGE_VAL,
+HUGE_VALF,
or
+HUGE_VALL,
is returned.
ERRORS
See
math_error(7)
for information on how to determine whether an error has occurred
when calling these functions.
The following errors can occur:
 Domain error: x is negative, and y is a finite noninteger

errno
is set to
EDOM.
An invalid floatingpoint exception
(FE_INVALID)
is raised.
 Pole error: x is zero, and y is negative

errno
is set to
ERANGE
(but see BUGS).
A dividebyzero floatingpoint exception
(FE_DIVBYZERO)
is raised.
 Range error: the result overflows

errno
is set to
ERANGE.
An overflow floatingpoint exception
(FE_OVERFLOW)
is raised.
 Range error: the result underflows

errno
is set to
ERANGE.
An underflow floatingpoint exception
(FE_UNDERFLOW)
is raised.
ATTRIBUTES
For an explanation of the terms used in this section, see
attributes(7).
Interface  Attribute  Value

pow(),
powf(),
powl()
 Thread safety  MTSafe

CONFORMING TO
C99, POSIX.12001, POSIX.12008.
The variant returning
double
also conforms to
SVr4, 4.3BSD, C89.
BUGS
On 64bits,
pow()
may be more than 10,000 times slower for some (rare) inputs
than for other nearby inputs.
This affects only
pow(),
and not
powf()
nor
powl().
In glibc 2.9 and earlier,
when a pole error occurs,
errno
is set to
EDOM
instead of the POSIXmandated
ERANGE.
Since version 2.10,
glibc does the right thing.
If
x
is negative,
then large negative or positive
y
values yield a NaN as the function result, with
errno
set to
EDOM,
and an invalid
(FE_INVALID)
floatingpoint exception.
For example, with
pow(),
one sees this behavior when the absolute value of
y
is greater than about 9.223373e18.
In version 2.3.2 and earlier,
when an overflow or underflow error occurs, glibc's
pow()
generates a bogus invalid floatingpoint exception
(FE_INVALID)
in addition to the overflow or underflow exception.
SEE ALSO
cbrt(3),
cpow(3),
sqrt(3)
COLOPHON
This page is part of release 4.13 of the Linux
manpages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
https://www.kernel.org/doc/manpages/.
Index
 NAME

 SYNOPSIS

 DESCRIPTION

 RETURN VALUE

 ERRORS

 ATTRIBUTES

 CONFORMING TO

 BUGS

 SEE ALSO

 COLOPHON

