
Coroutines in C

by Simon Tatham

Introduction

Structuring a large program is always a difficult job. One of the particular problems that often
comes up is this: if you have a piece of code producing data, and another piece of code
consuming it, which should be the caller and which should be the callee?

Here is a very simple piece of run-length decompression code, and an equally simple piece
of parser code:

 /* Decompression code */
 while (1) {
 c = getchar();
 if (c == EOF)
 break;
 if (c == 0xFF) {
 len = getchar();
 c = getchar();
 while (len--)
 emit(c);
 } else
 emit(c);
 }
 emit(EOF);

 /* Parser code */
 while (1) {
 c = getchar();
 if (c == EOF)
 break;
 if (isalpha(c)) {
 do {
 add_to_token(c);
 c = getchar();
 } while (isalpha(c));
 got_token(WORD);
 }
 add_to_token(c);
 got_token(PUNCT);
 }

Each of these code fragments is very simple, and easy to read and understand. One
produces a character at a time by calling emit(); the other consumes a character at a time by
calling getchar(). If only the calls to emit() and the calls to getchar() could be made to feed
data to each other, it would be simple to connect the two fragments together so that the
output from the decompressor went straight to the parser.

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 1 of 11

In many modern operating systems, you could do this using pipes between two processes or
two threads. emit() in the decompressor writes to a pipe, and getchar() in the parser reads
from the other end of the same pipe. Simple and robust, but also heavyweight and not
portable. Typically you don't want to have to divide your program into threads for a task this
simple.

In this article I offer a creative solution to this sort of structure problem.

Rewriting

The conventional answer is to rewrite one of the ends of the communication channel so that
it's a function that can be called. Here's an example of what that might mean for each of the
example fragments.

int decompressor(void) {
 static int repchar;
 static int replen;
 if (replen > 0) {
 replen--;
 return repchar;
 }
 c = getchar();
 if (c == EOF)
 return EOF;
 if (c == 0xFF) {
 replen = getchar();
 repchar = getchar();
 replen--;
 return repchar;
 } else
 return c;
}

void parser(int c) {
 static enum {
 START, IN_WORD
 } state;
 switch (state) {
 case IN_WORD:
 if (isalpha(c)) {
 add_to_token(c);
 return;
 }
 got_token(WORD);
 state = START;
 /* fall through */

 case START:

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 2 of 11

 add_to_token(c);
 if (isalpha(c))
 state = IN_WORD;
 else
 got_token(PUNCT);
 break;
 }
}

Of course you don't have to rewrite both of them; just one will do. If you rewrite the
decompressor in the form shown, so that it returns one character every time it's called, then
the original parser code can replace calls to getchar() with calls to decompressor(), and the
program will be happy. Conversely, if you rewrite the parser in the form shown, so that it is
called once for every input character, then the original

decompression code can call parser() instead of emit() with no problems. You would only
want to rewrite both functions as callees if you were a glutton for punishment.

And that's the point, really. Both these rewritten functions are thoroughly ugly compared to
their originals. Both of the processes taking place here are easier to read when written as a
caller, not as a callee. Try to deduce the grammar recognised by the parser, or the
compressed data format understood by the decompressor, just by reading the code, and you
will find that both the originals are clear and both the rewritten forms are less clear. It would
be much nicer if we didn't have to turn either piece of code inside out.

Knuth's coroutines

In The Art of Computer Programming, Donald Knuth presents a solution to this sort of
problem. His answer is to throw away the stack concept completely. Stop thinking of one
process as the caller and the other as the callee, and start thinking of them as cooperating
equals.

In practical terms: replace the traditional "call" primitive with a slightly different one. The new
"call" will save the return value somewhere other than on the stack, and will then jump to a
location specified in another saved return value. So each time the decompressor emits
another character, it saves its program counter and jumps to the last known location within
the parser - and each time the parser needs another character, it saves its own program
counter and jumps to the location saved by the decompressor. Control shuttles back and
forth between the two routines exactly as

often as necessary.

This is very nice in theory, but in practice you can only do it in assembly language, because
no commonly used high level language supports the coroutine call primitive. Languages like
C depend utterly on their stack-based structure, so whenever control passes from any
function to any other, one must be the caller and the other must be the callee. So if you want
to write portable code, this technique is at least as impractical as the Unix pipe solution.

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 3 of 11

Stack-based coroutines

So what we would really like is the ability to mimic Knuth's coroutine call primitive in C. We
must accept that in reality, at the C level, one function will be caller and the other will be
callee. In the caller, we have no problem; we code the original algorithm, pretty much exactly
as written, and whenever it has (or needs) a character it calls the other function.

The callee has all the problems. For our callee, we want a function which has a "return and
continue" operation: return from the function, and next time it is called, resume control from
just after the return statement. For example, we would like to be able to write a function that
says

int function(void) {
 int i;
 for (i = 0; i < 10; i++)
 return i; /* won't work, but wouldn't it be nice */
}

and have ten successive calls to the function return the numbers 0 through 9.

How can we implement this? Well, we can transfer control to an arbitrary point in the function
using a goto statement. So if we use a state variable, we could do this:
int function(void) {
 static int i, state = 0;
 switch (state) {
 case 0: goto LABEL0;
 case 1: goto LABEL1;
 }
 LABEL0: /* start of function */
 for (i = 0; i < 10; i++) {
 state = 1; /* so we will come back to LABEL1 */
 return i;
 LABEL1: /* resume control straight after the return */
 }
}

This method works. We have a set of labels at the points where we might need to resume
control: one at the start, and one just after each return statement. We have a state variable,
preserved between calls to the function, which tells us which label we need to resume control
at next. Before any return, we update the state variable to point at the right label; after any
call, we do a switch on the value of the variable to find out where to jump to.

It's still ugly, though. The worst part of it is that the set of labels must be maintained
manually, and must be consistent between the function body and the initial switch statement.
Every time we add a new return statement, we must invent a new label name and add it to
the list in the switch; every time we remove a return statement, we must remove its
corresponding label. We've just increased our maintenance workload by a factor of

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 4 of 11

two.

Duff's device

The famous "Duff's device" in C makes use of the fact that a case statement is still legal
within a sub-block of its matching switch statement. Tom Duff used this for an optimised
output loop:
 switch (count % 8) {
 case 0: do { *to = *from++;
 case 7: *to = *from++;
 case 6: *to = *from++;
 case 5: *to = *from++;
 case 4: *to = *from++;
 case 3: *to = *from++;
 case 2: *to = *from++;
 case 1: *to = *from++;
 } while ((count -= 8) > 0);
 }

We can put it to a slightly different use in the coroutine trick. Instead of using a switch
statement to decide which goto statement to execute, we can use the switch statement to
perform the jump itself:
int function(void) {
 static int i, state = 0;
 switch (state) {
 case 0: /* start of function */
 for (i = 0; i < 10; i++) {
 state = 1; /* so we will come back to "case 1" */
 return i;
 case 1: /* resume control straight after the return */
 }
 }
}

Now this is looking promising. All we have to do now is construct a few well chosen macros,
and we can hide the gory details in something plausible-looking:

#define crBegin static int state=0; switch(state) { case 0:
#define crReturn(i,x) do { state=i; return x; case i:; } while (0)
#define crFinish }
int function(void) {
 static int i;
 crBegin;
 for (i = 0; i < 10; i++)
 crReturn(1, i);

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 5 of 11

 crFinish;
}

(note the use of do ... while(0) to ensure that crReturn does not need braces around it when it
comes directly between if and else)

This is almost exactly what we wanted. We can use crReturn to return from the function in
such a way that
control at the next call resumes just after the return. Of course we must obey some ground
rules (surround the function body with crBegin and crFinish; declare all local variables static if
they need to be preserved across a crReturn; never put a crReturn within an explicit switch
statement); but those do not limit us very much.

The only snag remaining is the first parameter to crReturn. Just as when we invented a new
label in the
previous section we had to avoid it colliding with existing label names, now we must ensure
all our state parameters to
crReturn are different. The consequences will be fairly benign - the compiler will catch it and
not let it do horrible things at run time - but we still need to avoid doing it.

Even this can be solved. ANSI C provides the special macro name __LINE__, which
expands to the current source line number. So we can rewrite crReturn as
#define crReturn(x) do { state=__LINE__; return x; \
 case __LINE__:; } while (0)

and then we no longer have to worry about those state parameters at all, provided we obey a
fourth ground rule (never put two crReturn statements on the same line).

Evaluation

So now we have this monstrosity, let's rewrite our original code fragments using it.

int decompressor(void) {
 static int c, len;
 crBegin;
 while (1) {
 c = getchar();
 if (c == EOF)
 break;
 if (c == 0xFF) {
 len = getchar();

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 6 of 11

 c = getchar();
 while (len--)
	 crReturn(c);
 } else
	 crReturn(c);
 }
 crReturn(EOF);
 crFinish;
}

void parser(int c) {
 crBegin;
 while (1) {
 /* first char already in c */
 if (c == EOF)
 break;
 if (isalpha(c)) {
 do {
 add_to_token(c);
		crReturn();
 } while (isalpha(c));
 got_token(WORD);
 }
 add_to_token(c);
 got_token(PUNCT);
	crReturn();
 }
 crFinish;
}

We have rewritten both decompressor and parser as callees, with no need at all for the
massive restructuring we had to do last time we did this. The structure of each function
exactly mirrors the structure of its original form. A reader can deduce the grammar
recognised by the parser, or the compressed data format used by the decompressor, far
more easily than by reading the obscure state-machine code. The control flow is intuitive
once you have wrapped your mind around the new format: when the decompressor has a
character, it passes it back to the caller with crReturn and waits to be called again when
another character is required. When the parser needs another character, it returns using
crReturn, and waits to be called again with the new character in the parameter c.

There has been one small structural alteration to the code: parser() now has its getchar()
(well, the corresponding crReturn) at the end of the loop instead of the start, because the first
character is already in c when the function is entered. We could accept this small change in
structure, or if we really felt strongly about it we could specify that parser() required an
"initialisation" call before you could start feeding it characters.

As before, of course, we don't have to rewrite both routines using the coroutine macros. One
will suffice; the other can be its caller.

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 7 of 11

We have achieved what we set out to achieve: a portable ANSI C means of passing data
between a producer and a consumer without the need to rewrite one as an explicit state
machine. We have done this by combining the C preprocessor with a little-used feature of the
switch statement to create an implicit state machine.

Coding Standards

Of course, this trick violates every coding standard in the book. Try doing this in your
company's code and you will probably be subject to a stern telling off if not disciplinary
action! You have embedded unmatched braces in macros, used case within sub-blocks, and
as for the crReturn macro with its terrifyingly disruptive contents .Â .Â . It's a wonder you haven't
been fired on the spot for such irresponsible coding practice. You should be ashamed of
yourself.

I would claim that the coding standards are at fault here. The examples I've shown in this
article are not very long, not very complicated, and still just about comprehensible when
rewritten as state machines. But as the functions get longer, the degree of rewriting required
becomes greater and the loss of clarity becomes much, much worse.

Consider. A function built of small blocks of the form
 case STATE1:
 /* perform some activity */
 if (condition) state = STATE2; else state = STATE3;

is not very different, to a reader, from a function built of small blocks of the form
 LABEL1:
 /* perform some activity */
 if (condition) goto LABEL2; else goto LABEL3;

One is caller and the other is callee, true, but the visual structure of the functions are the
same, and the insights they provide into their underlying algorithms are exactly as small as
each other. The same people who would fire you for using my coroutine macros would fire
you just as loudly for building a function out of small blocks connected by goto statements!
And this time they would be right, because laying out a function like that obscures the
structure of the algorithm horribly.

Coding standards aim for clarity. By hiding vital things like switch, return and case statements
inside "obfuscating" macros, the coding standards would claim you have obscured the
syntactic structure of the program, and violated the requirement for clarity. But you have
done so in the

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 8 of 11

cause of revealing the algorithmic structure of the program, which is far more likely to be
what the reader wants to know!

Any coding standard which insists on syntactic clarity at the expense of algorithmic clarity
should be rewritten. If your employer fires you for using this trick, tell them that repeatedly as
the security staff drag you out of the building.

Refinements and Code

In a serious application, this toy coroutine implementation is unlikely to be useful, because it
relies on static variables and so it fails to be re-entrant or multi-threadable. Ideally, in a real
application, you would want to be able to call the same function in several different contexts,
and at each call in a given context, have control resume just after the last return in the same
context.

This is easily enough done. We arrange an extra function parameter, which is a pointer to a
context structure; we declare all our local state, and our coroutine state variable, as elements
of that structure.

It's a little bit ugly, because suddenly you have to use ctx->i as a loop counter where you
would previously just have used i; virtually all your serious variables become elements of the
coroutine context structure. But it removes the problems with re-entrancy, and still hasn't
impacted the structure of the routine.

(Of course, if C only had Pascal's with statement, we could arrange for the macros to make
this layer of indirection truly transparent as well. A pity. Still, at least C++ users can manage
this by having their coroutine be a class member, and keeping all its local variables in the
class so that the scoping is implicit.)

Included here is a C header file that implements this coroutine trick as a set of pre-defined
macros. There are two sets of macros defined in the file, prefixed scr and ccr. The scr
macros are the simple form of the technique, for when you can get away with using static
variables; the ccr macros provide the advanced re-entrant form. Full documentation is given
in a comment in the header file itself.

Note that Visual C++ version 6 doesn't like this coroutine trick, because its default debug
state (Program Database for Edit and Continue) does something strange to the __LINE__
macro. To compile a coroutine-using program with VC++ 6, you must turn off Edit and
Continue. (In the project settings, go to the "C/C++" tab, category "General", setting "Debug
info". Select any option other than "Program Database for Edit and Continue".)

(The header file is MIT-licensed, so you can use it in anything you like without restriction. If
you do find something the MIT licence doesn't permit you to do, mail me, and I'll probably
give you explicit permission to do it anyway.)

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 9 of 11

Follow this link for coroutine.h.

Thanks for reading. Share and enjoy!

References

* Donald Knuth, The Art of Computer Programming, Volume
1. Addison-Wesley, ISBN 0-201-89683-4. Section 1.4.2 describes
coroutines in the "pure" form.

* http://www.lysator.liu.se/c/duffs-device.html is Tom Duff's own discussion of Duff's
device. Note, right at the bottom, a hint that Duff might also have independently invented
this
coroutine trick or something very like it.

* PuTTY
is a Win32 Telnet and SSH client. The SSH protocol code contains real-life use of this
coroutine trick. As far as I know, this is the worst piece of C hackery ever seen in serious
production code.

Copyright Â© 2000 Simon Tatham.
This document is OpenContent.
You may copy and use the text under the terms of the OpenContent
Licence.
Please send comments and criticism to anakin@pobox.com.
From http://www.chiark.greenend.org.uk/~sgtatham/coroutines.htmlcurrent rating:

image:rdf newsfeed / //static.linuxhowtos.org/data/rdf.png (null)
 |
image:rss newsfeed / //static.linuxhowtos.org/data/rss.png (null)
 |
image:Atom newsfeed / //static.linuxhowtos.org/data/atom.png (null)
- Powered by
image:LeopardCMS / //static.linuxhowtos.org/data/leopardcms.png (null)
 - Running on
image:Gentoo / //static.linuxhowtos.org/data/gentoo.png (null)
 -
Copyright 2004-2020 Sascha Nitsch Unternehmensberatung GmbH
image:Valid XHTML1.1 / //static.linuxhowtos.org/data/xhtml.png (null)
 :
image:Valid CSS / //static.linuxhowtos.org/data/css.png (null)
 :
image:buttonmaker / //static.linuxhowtos.org/data/buttonmaker.png (null)
- Level Triple-A Conformance to Web Content Accessibility Guidelines 1.0 -

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 10 of 11

- Copyright and legal notices -
Time to create this page: ms
<!--
image:system status display / /status/output.jpg (null)
-->

http://www.linuxhowtos.org/C_C++/coroutines.pdf

page 11 of 11

